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Probabilistic forecasts

weather forecasting is considered the ultimate problem in me-

teorology (Bjerknes 1904)

in current practice, medium-range weather forecasting is based on

numerical weather prediction (NWP) models that represent

the physics and chemistry of the atmosphere

however, there are major sources of uncertainty, including uncer-

tainty about initial conditions and model parameters

thus, attention has turned to probabilistic forecasts, taking the

form of probability distributions over future weather states

preferred approach to probabilistic weather prediction is based on

carefully designed ensembles of NWP model runs

global medium-range ensemble prediction systems have been

operational at the ECMWF and NCEP since December 1992



Towards probabilistic weather forecasting

Tim Palmer (2000):

Although forecasters have traditionally viewed weather prediction as
deterministic, a culture change towards probabilistic forecasting is in
progress.

Tim Palmer (2012):

[. . . ] in the coming decade, NWP centres should start to focus ex-

clusively on developing probabilistic forecast systems, dropping their
separate higher-resolution deterministic forecast systems, and, impor-
tantly measuring progress, and formulating strategic goals, principally
in terms of improvements to probabilistic scores.



What is a good probabilistic forecast?

Gneiting, Balabdaoui and Raftery (2007) contend that the goal

of probabilistic forecasting is to maximize the sharpness of the

predictive distributions subject to calibration

calibration

refers to the statistical compatibility between the predictive

distributions and the verifying observations

• joint property of the forecasts and the observations

• in a nutshell, the observations are supposed to behave like

random numbers sampled from the predictive distributions

• can be assessed via rank or probability integral transform

(PIT) histograms

sharpness

refers to the spread of the predictive distributions

• property of the probabilistic forecasts only



Proper scoring rules

proper scoring rules allow for the joint assessment of calibration

and sharpness

a scoring rule is a function

s(F, y)

that assigns a numerical score to each pair (F, y), where F is the

predictive distribution and y is the realizing observation

we consider scores to be negatively oriented penalties that fore-

casters aim to minimize

a proper scoring rule s satisfies the expectation inequality

EG s(G, Y ) ≤ EG s(F, Y ) for all F,G,

thereby encouraging honest and careful assessments (Gneiting

and Raftery 2007)



Continuous ranked probability score

in meteorological applications, the most popular proper score is

the continuous ranked probability score (CRPS),

s(F, y) =

∫ ∞

−∞
(F(x)− 1(x ≥ y))2 dx

= EF |X − y| −
1

2
EF |X −X ′|

where X and X ′ are independent random variables with cumulative

distribution function F (Matheson and Winkler 1976; Hersbach

2000; Gneiting and Raftery 2007)

• the CRPS is reported in the same unit as the observations

• in the case of a single-valued forecast, the CRPS reduces to

the absolute error

• thus, the CRPS provides a direct way of comparing single-

valued forecasts and probabilistic forecasts

• the CRPS is a special case of the proper energy score (ES)

for multivariate quantities
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Statistical postprocessing of NWP ensembles

despite their undisputed success, NWP ensembles are subject to

model biases, and typically they show a lack of calibration

• in typical experience, rank histograms are U-shaped, indicating

underdispersion

thus, some form of statistical postprocessing is required to gen-

erate calibrated and sharp predictive distributions from NWP

model output

• idea is to exploit structure in past forecast-observation pairs

to correct for systematic deficiencies in the model output

• approach depends on the availability of a suitable training set,

consisting of past forecast-observation pairs

• typically, a rolling training period of 20-40 days is used to

estimate statistical parameters

• training sets can be usefully augmented by reforecast data

• simple bias correction doesn’t suffice — e.g., in the case of

precipitation, additive terms won’t work



EMOS/NR and BMA

two general approaches to the statistical postprocessing of NWP

ensemble output have emerged, namely

• ensemble model output statistics (EMOS) or nonhomo-

geneous regression (NR), which fits a single, parametric

predictive distribution using summary statistics from the en-

semble (Gneiting et al. 2005)

y |x1, . . . , xM ∼ f( y |x1, . . . , xM)

• Bayesian model averaging (BMA), which fits a mixture den-

sity as predictive distribution, where each ensemble member is

associated with a kernel function (Raftery et al. 2005)

y |x1, . . . , xM ∼
M
∑

m=1

wm g(y |xm)

in our experience, the two approaches yield similar predictive per-

formance, with BMA being the more flexible and EMOS/NR

the more parsimonious method



EMOS/NR and BMA for temperature

consider an ensemble forecast, x1, . . . , xM, for temperature, y,

at a given time and location

EMOS/NR employs a single Gaussian predictive density, in that

y |x1, . . . , xM ∼ N (a0 + a1x1 + · · ·+ aMxM , b0 + b1s
2)

with location parameters b0 and b1, . . . , bM, and spread parameters

c0 and c1, where s2 is the ensemble variance

BMA employs Gaussian kernels with a linearly bias-corrected mean,

i.e., the BMA predictive density is the Gaussian mixture

y |x1, . . . , xM ∼
M
∑

m = 1

wm N (c0m + c1mxm, σ
2
m)

with BMA weights w1, . . . , wM, bias parameters c01, . . . , c0M and

c11, . . . , c1M, and spread parameters σ2
1, . . . , σ

2
M

for ensembles with exchangeable members, such as the ECMWF

system, member specific statistical parameters are constrained to

be equal; e.g., a1 = · · · = aM or w1 = · · · = wM = 1
M



Ensemble model output statistics (EMOS) or nonhomoge-

neous regression (NR)

Weather Quantity Range Distribution ( f)

Temperature y ∈ R Normal

Pressure y ∈ R Normal

Precipitation amount y1/2 ∈ R
+ Truncated logistic

y ∈ R
+ Generalized extreme value

Wind components y ∈ R Normal

Wind speed y ∈ R
+ Truncated normal
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Bayesian model averaging (BMA)

Variable Range Kernel ( g) Mean Variance

Temperature y ∈ R Normal c0m + c1mxm σ2
m

Pressure y ∈ R Normal c0m + c1mxm σ2
m

Precipitation accumulation y1/3 ∈ R
+ Gamma c0m + c1mxm d0m + d1mxm

Wind components y ∈ R Normal c0m + c1mxm σ2
m

Wind speed y ∈ R
+ Gamma c0m + c1mxm d0m + d1mxm

Visibility y ∈ [0,1] Beta c0m + c1mx
1/2
m d0m + d1mx
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m
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Bayesian model averaging (BMA)

Variable Range Kernel (f) Mean Variance

Precipitation accumulation y1/3 ∈ R
+ Gamma c0m + c1mxm d0m + d1mxm
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precipitation accumulation in Frankfurt, valid May 18–31, 2011, 24-hour lead time, rolling
30-day training period
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Accounting for dependencies

EMOS/NR and BMA apply to any single weather variable at

any single location and any single look-ahead time

however, individually postprocessed distributions fail to account

for multivariate dependence structures

the most pressing need now is to develop postprocessing tech-

niques that yield physically realistic probabilistic forecasts of

spatio-temporal weather trajectories for multiple weather vari-

ables at multiple locations and multiple look-ahead times

key applications include air traffic control, ship routeing and

hydrologic predictions



Example

illustration: 24-hour ECMWF ensemble forecast of surface tem-

perature and pressure at Berlin and Hamburg valid May 27, 2010

before and after BMA postprocessing
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Sklar’s theorem

EMOS/NR and BMA apply to any single weather variable at

any single location and any single look-ahead time

yielding a univariate or marginal predictive cumulative distribu-

tion function (CDF), Fl, for any given univariate weather quan-

tity Yl

with each multi-index l = (i, j, k) referring to weather variable i,

location j and look-ahead time k

we seek a physically realistic and consistent multivariate or joint

predictive CDF, F , with margin Fl for each l = 1, . . . , L

Sklar’s theorem (1959): every multivariate CDF F with margins

F1, . . . , FL can be written as

F(y1, . . . , yL) = C(F1(y1), . . . , FL(yL))

where C : [0,1]L → [0,1] is a copula, i.e., a multivariate CDF with

standard uniform margins



Copula approaches

in order to issue physically realistic and consistent probabilistic

forecasts of spatio-temporal weather trajectories

it remains to specify and fit a suitable copula C : [0,1]L → [0,1]

if L is small, or if specific structure can be exploited, parametric

families of copulas work well

• Gel et al. (2004), Berrocal et al. (2007), Pinson et al. (2009),

Schuhen et al. (2012) and Möller et al. (2013) use Gaussian

copulas

• parametric or semi-parametric alternatives include elliptical,

Archimedean, hierarchical Archimedean and pair copulas

if L is huge and no specific structure can be exploited, we need to

resort to non-parametric approaches, based on empirical copu-

las, with the Schaake shuffle (Clark et al. 2004) and ensemble

copula coupling (ECC) being particularly attractive options



Ensemble copula coupling (ECC)

given an NWP ensemble of size M for the weather variables Yl,

where l = 1, . . . , L, ensemble copula coupling (ECC) proceeds

in three steps

univariate postprocessing: for each l = 1, . . . , L, apply EMOS/NR

or BMA to obtain a postprocessed predictive CDF, Fl

quantization: for each l = 1, . . . , L, obtain a discrete sample of

size M from Fl, namely

x̃m = F −1
l

(

m

M +1

)

, m = 1, . . . ,M

ensemble reordering: take the function C : [0,1]L → [0,1] in

Sklar’s theorem to be the empirical copula of the raw ensemble,

i.e., arrange the postprocessed values in the same rank order as

the raw ensemble values



Ensemble copula coupling (ECC)

the method is implicit or explicit in scattered recent work, in-

cluding that of Bremnes (2007), Krzysztofowicz and Toth (2008),

Flowerdew (2012), Pinson (2011), Roulin and Vannitsem (2012)

and Schuhen, Thorarinsdottir and Gneiting (2012)

Flowerdew (2012, p. 15) explains the idea colorfully:

The key to preserving spatial, temporal and inter-variable structure is
how this set of values is distributed between ensemble members. One
can always construct ensemble members by sampling from the cali-
brated PDF, but this alone would produce spatially noisy fields lacking
the correct correlations. Instead, the values are assigned to ensemble

members in the same order as the values from the raw ensemble: the

member with the locally highest rainfall remains locally highest, but

with a calibrated rainfall magnitude.

an up-to-date review of ECC type techniques is provided by Schefzik,

Thorarinsdottir and Gneiting (2013)



Ensemble copula coupling (ECC)

illustration: 24-hour ECMWF ensemble forecast of surface tem-

perature and pressure at Berlin and Hamburg valid May 27, 2010

before and after postprocessing with BMA
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Ensemble copula coupling (ECC)

illustration: 24-hour ECMWF ensemble forecast of surface tem-

perature and pressure at Berlin and Hamburg valid May 27, 2010

before and after postprocessing with BMA + ECC
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Case study: ECMWF ensemble

we consider statistical postprocessing for the ECMWF’s oper-

ational 50-member system

using the BMA, EMOS/NR and ECC techniques for surface

temperature, pressure, precipitation, and the u wind compo-

nent

at the airports in Berlin-Tegel, Frankfurt and Hamburg, Ger-

many

at lead times of 24 and 48 hours

the statistical parameters for BMA and EMOS/NR are estimated

on a rolling 30-day training period, with the member specific

parameters constrained to be equal

the test period ranges from May 1, 2010 through April 30, 2011

for details and further results see Schefzik, Thorarinsdottir and

Gneiting (2013)



Results: Univariate weather quantities

CRPS AE

Berlin Frankfurt Hambg Berlin Frankfurt Hambg

Temp. 24 ENS 1.21 1.23 1.01 1.50 1.53 1.26
(◦C) ENS+BMA 0.90 0.88 0.79 1.27 1.23 1.10

48 ENS 1.25 1.26 1.06 1.62 1.63 1.39
ENS+BMA 0.99 0.97 0.92 1.41 1.33 1.31

Pressure 24 ENS 0.54 0.55 0.51 0.75 0.75 0.71
(hPa) ENS+BMA 0.43 0.43 0.39 0.62 0.61 0.54

48 ENS 0.80 0.78 0.77 1.12 1.08 1.09
ENS+BMA 0.77 0.74 0.73 1.08 1.03 1.03

Precip. 24 ENS 0.25 0.41 0.31 0.32 0.51 0.39
(mm) ENS+BMA 0.23 0.40 0.37 0.30 0.49 0.44

48 ENS 0.26 0.41 0.36 0.34 0.50 0.45
ENS+BMA 0.26 0.43 0.39 0.32 0.52 0.48

u-Wind 24 ENS 0.83 0.96 0.89 1.06 1.19 1.11
(ms−1) ENS+EMOS 0.70 0.60 0.68 0.98 0.81 0.96

48 ENS 0.82 0.89 0.88 1.09 1.15 1.18
ENS+EMOS 0.75 0.62 0.75 1.05 0.83 1.04



Results: Univariate weather quantities
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Results: Multivariate weather quantities

ensemble forecasts of temperature or pressure at all three sites

simultaneously, at 48-hour lead time

Energy score Temp Pressure
(◦C) (hPa)

ENS 2.34 1.48

ENS+BMA 1.93 1.48

ENS+BMA+ECC 1.92 1.43
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Discussion

statistical postprocessing techniques such as ensemble model

output statistics (EMOS/NR) and Bayesian model averaging

(BMA) can yield gains in lead time of several days for surface

weather variables

statistical parameters need to be estimated from training data,

which can be usefully augmented by using reforecasts (Hamill,

Hagedorn and Whitaker 2008)

future research and development is expected to focus on ensem-

ble postprocessing techniques for multiple weather variables at

multiple locations and multiple look-ahead times simultane-

ously

with the goal of generating calibrated and sharp ensemble fore-

casts of spatio-temporal weather scenarios

in this setting, the ensemble copula coupling (ECC) method

can serve as a benchmark
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