Climate response to externally induced
time-dependent forcings :
signatures and early warnings



Intrinsically-generated variability of the climatic system over a wide range

of time scales, often manifested through the occurrence of large-scale
transitions between different states.
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e Operational forecasting models, typically involving large numbers of
variables and parameters.

* Concepts and methods of nonlinear dynamics, illustrated on low-order
models.

Generic mechanisms at the basis of natural variability and of the
transitions between states:

*Loss of stability of a certain “reference” state and bifurcation of new
branches of solutions.

* Aperiodic behavior in the form of deterministic chaos.



Errors arising from model uncertainties. Stochastic parameterization of unresolved
scales via error source terms modeled as Gaussian Markov noises.

Role of externally-induced forcings on the evolution of global climate: time-dependent
“control” parameters (CO5 increase,...) interfering with the natural evolution laws.
Need to disentangle natural variability from the effect of such externally-induced
systematic biases when addressing the issue of climatic change.

Main thesis : Climatic change can be viewed as the response of a nonlinear dy-
namical system to time-dependent “control” parameters in the presence of noise,

Wi v hon) + R =1

where v; accounts for the principal kinetic and thermodynamic processes control-
ling the evolution of the variables ;.




e Can this type of forcing give rise to new transition phenomena between states
or interfere with already existing ones.

e If so, can these transitions be anticipated by monitoring suitable “forerunner’
observables.

Our strategy : take advantage of the reduction of the multivariate dynamics in the
vicinity of certain kinds of transitions into a low-order one described by a universal
normal form featuring a limited number of variables, the order parameters

dx i
dt

= fi({z;}, A(t)) + F;(t) 1=1,---.m m<<n

where x, A, F' are combinations of y, u and R.



Focus on the frequently encountered case of transitions between steady-state so-
lutions (glacial to interglacial climate, zonal to blocked circulation, etc).

Normal form equations reduce then to a single equation for a single relevant order
parameter

dx

= F{hA®) + F (0

such that for A constant and in absence of noise there exists a critical value A,
where bifurcation of new branches of solutions is taking place.

Adopt parameter variability in the form of a ramp :

o \(t) = Ao + et with Ay < A,

e/Ao| << 1 "forward case"

® )\(t) = Ao — et With \g > A,

e/Ao| << 1 "backward case"

Two realizations of this setting:

e Supercritical pitchfork bifurcation.

e Limit point bifurcation.



1. Pitchfork bifurcation
A. Noise-free system
B. Effect of noise
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3. lllustration on a global energy balance model

4. Conclusions



1. Pitchfork bifurcation

A. Noise-free system

Normal form

(b,) I
i Az — 2°

(a) (a') Fixed A

- A < 0 unique stable state z = 0

A >0 x =0 becomes unstable
(b,) r. = +\Y/2 are new stable states

A = 0 bifurcation point




Time dependent A

e Forward case \(t) = A\g +€t, Ao <0

Exact solution

xoexp{ Aot + e%
: = A2 €
[1 — zazg\/gexp(—?o)(El‘ﬁ >\€O1—|/_2t — Erfi 6?92 )]

x(t) = 73

Linearized version, suitable for short-time behavior

t2
r(t) =~ 1o exp ()\ot + 65)

Main effect : Switching to the non-trivial solution is delayed by a time
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e Backward case A\(t) = \g —€t, A\g >0

Exact solution

L0 exp{)\ot — 6%

x(t) =
1+ x%\/éexp(%‘%)(—Erngﬁt - Erf

1/2

0]

Main effect : Transition to the trivial branch x = 0 starting from state z (0) =
Aé/Q IS likewise delayed.
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B. Effect of noise

Ccll—f = \(t)x — z° + F(t)

F(t) Gaussian white noise of strength ¢?
Associated Fokker-Planck equation

or_ 0
ot  Ox

q2 aZP
2 Ox?

(At)x — x°)P A

Average < x > coupled to the variance < dz* >, < dz* > coupled to < dz° >
and < dz* >, efc. ..



Moments

e Exact expressions in the adiabatic approximation :

A(t) Kija(a) — K3/4()

<or > = for A <O
‘ 2 K1 /4(c)
< 0z >, = At) K1/4(a) i K3/4(a) U W\@(IIM(Q) * [3/4(a))for A>0
2 Kija(a) + V214 j4(c)
<oxt> = ¢ (o + %)K1/4(Oé) — aKs/4(a) for A<O0
2 K1/4(Oé)

2 1 K1ja(a) + mV2la(I_s/4(0) + Iy /a(a)) + (4 1)1 ja(a) + adz ()]

for A>0
Ki/4(@) -|-7T\@I1/4(04)

< 5%4 >y = 2q

where K and I are modified Bessel functions of fractional order, I_,, = I, +
2/msin(mv) K, and « stands for A%(t)/(4q¢?).

e Numerical integration of the Fokker-Planck equation for given noise strength
and for different €’s.



Growth of 2°¢ and 4" order variances in the forward scenario: early warning.

Maximum of susceptibility, x ) = a<g§2>_

Delays tend to be reduced by the noise.
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Entropies

Information entropy

Si(t) = —/da:'P(x,t) In P(x,t)

and information entropy production

18P2
L [yq 0
/xP&I: ~

as global indicators

Extrema of both S; and o; well beyond the transition point A = 0, indicating delays
associated to the reshuftling of the probability mass as the system gradually enters
In the two-state region.
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Further indicators of global behavior : frozen states

On a long time scale, transitions are taking place between the “adiabatic”

stable branches x4+ = 4+ (A\g + et)1/2 across the “barrier” associated to the
presence of the intermediate unstable state x = 0.

The characteristic time of these transitions is given by a generalization of the
classical Kramers expression for the rate of an activated process :

_ V2 Ao + €t 2
T 1(t):7()\0+6t)exp ! 02q2 )




It follows that there exists a finite fraction of initial conditions in the quasi-attraction
basin of x (¢) (or of z_(¢)) that will never cross the barrier, given by the expression

1 1 \/§q2 )\2
5N—I—,oo — N—I—,oo _ 5 — (N—I—(O) _ 5) CXP [————¢eXpP <__02)

This faction depends very sensitively on € and ¢>.




Stochastic simulations (breakdown of ergodicity)
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2. Limit point bifurcation

A. Noise-free system

Normal form
£
S —
dx
— = A(t) — 2
= Al) -z
Fixed A
\ A A < 0 no steady state, trajectories diverge to —oc
~
™ A >0 z,. = A\/2is a stable steady state
0™ - r_ = —\/2 is an unstable steady state

A = 0 bifurcation point



Time dependent A

Exact solution

A/Z-(AEOQ:I/:;t) CB/Z-(AO:l:et)

Ai(29FL) + CBi(255)

where + refer to the forward and backward cases respectively and C' is determined
by the initial condition

::61/3A,i( 62‘93 ) — :L’OAZ( 6;\?3 )

Bi( 2 a0 F P Bi( 2ts)

Az, Bt are the Airy functions.



Main effects :

e Stabilization of a wide class of states that would otherwise diverge to —oo, as
long as initial conditions satisfy the inequality (forward case)

1/3 A/i( 62\93 )
S (_A0

Xrog > €




B. Effect of noise

dx 5
E:)\(t)—a’; + F(t)

F(t) Gaussian white noise of strength ¢*
Associated Fokker-Planck equation

(9_P_ 9,
ot  Ox

g 0*P
2 Oz

Average < = > coupled to the variance < dz* >, < dx* > coupled to < dz° >,
etc. ..



Analytic evaluation in the linearized regime provides a first understanding of the
behaviour of the fluctuations

Starting point :

d < dx? >

o = —47(t) < 02 > +¢°

where z(t) satisfies the normal form equation in the absence of noise

Solution :

1 t )\0 T Etl
< 8x? > = ¢° / dt1Y4( )
Y4(>\€O2:|/:§t) 0 E2/3

where Y is a linear combination of Airy functions.

Diffusion-like behavior in the vicinity of the limit point (short times)

< 0x? >, ~ gt



Slowing down followed by explosive behavior (backward scenario) : early warning.

Coupling with fluctuations accelerates explosive behavior.
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Fluctuation-driven evolutions.

Mean waiting times for crossing a prescribed threshold decrease with € and ¢2.
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Frozen states

Constant \: all trajectories eventually escape to —oo following fluctuation-induced
jumps across the barrier separating x_ from x_, with a characteristic time which is
an increasing function of A and is given again by a Kramers-type expression
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A3/ 2}

Y { 3q°

Time-dependent A, forward scenario: there exists a finite fraction of initial condi-
tions in the quasi-attraction basin of z, (¢) that will never escape, given by

2 3/2
q 8\
N—I—,oo — N_|_(O) eEXP |:—2— eEXP <— 3(]2 >:|
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This fraction depends again very sensitively on € and ¢?
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3. lllustration on a global energy balance model
Energy balance equation for the globally averaged temperature T’

dl’
CS- = Q1 —a(T) — I(T)

C' heat capacity
() solar constant
a Albedo

I Infrared cooling

Minimal model :
e Piecewise linear dependence of a on T’ (ice-albedo feedback).

e Linearized version of the Stefan-Boltzmann law for I, accounting also for the
effect of increasing CO, concentration

I(T)=A+BT - K



Fixed K : Transitions between steady states via limit point-like bifurcations.
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Time-dependent K : Stabilization of unstable states corresponding to a cool cli-
mate and slowing down prior to abrupt transitions toward a hot climate, in agree-
ment with the predictions of the normal form analysis.
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4. Conclusions

Climatic change viewed as the response of a nonlinear dynamical system to time-
dependent control parameters in the presence of noise.

Sorting out some generic trends thanks to the reduction of the multivariate dynam-
Ics into a low-order one in the vicinity of transition points.

|dentification of local and global forerunners of the transitions between steady states
occurring through a pitchfork or a limit point bifurcation:

e Transient stabilization of unstable states tend to delay the transition.

e Fluctuations start growing at a finite distance from the transition.

e Fluctuation-driven evolutions. Frozen states.

Apply the general procedure to more realistic models than the global energy bal-
ance model.

Extend to more complex transitions and to time-dependences beyond the linear
ramp.



