
Climate response to externally induced 
time-dependent forcings : 

signatures and early warnings



Intrinsically-generated variability of the climatic system over a wide range 
of time scales, often manifested through the occurrence of large-scale 
transitions between different states.

Transitions between states

III. Transitions between states

So far variability around a given state, represented by an attractor embedded in phase space.

Evidence of multiple states/attractors in atmospheric and climate dynamics :

! Atmospheric regimes (zonal flaws,
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Capturing and predicting these behaviors :

•Operational forecasting models, typically involving large numbers of 
variables and parameters.

•Concepts and methods of nonlinear dynamics, illustrated on low-order 
models.

Generic mechanisms at the basis of natural variability and of the 
transitions between states:

•Loss of stability of a certain “reference” state and bifurcation of new 
branches of solutions.

•Aperiodic behavior in the form of deterministic chaos.



Errors arising from model uncertainties. Stochastic parameterization of unresolved

scales via error source terms modeled as Gaussian Markov noises.

Role of externally-induced forcings on the evolution of global climate: time-dependent

“control” parameters (CO2 increase,. . . ) interfering with the natural evolution laws.

Need to disentangle natural variability from the effect of such externally-induced

systematic biases when addressing the issue of climatic change.

Main thesis : Climatic change can be viewed as the response of a nonlinear dy-

namical system to time-dependent “control” parameters in the presence of noise,

dyi
dt

= ⌫i({yj}, µ(t)) +Ri(t) i = 1, · · · , n

where ⌫i accounts for the principal kinetic and thermodynamic processes control-

ling the evolution of the variables yi.



Goals :

• Can this type of forcing give rise to new transition phenomena between states
or interfere with already existing ones.

• If so, can these transitions be anticipated by monitoring suitable “forerunner”
observables.

Our strategy : take advantage of the reduction of the multivariate dynamics in the
vicinity of certain kinds of transitions into a low-order one described by a universal
normal form featuring a limited number of variables, the order parameters :

dxi

dt

= fi({xj},�(t)) + Fi(t) i = 1, · · · ,m m << n

where x, �, F are combinations of y, µ and R.



Focus on the frequently encountered case of transitions between steady-state so-

lutions (glacial to interglacial climate, zonal to blocked circulation, etc).

Normal form equations reduce then to a single equation for a single relevant order

parameter

dx

dt

= f({x},�(t)) + F (t)

such that for � constant and in absence of noise there exists a critical value �c

where bifurcation of new branches of solutions is taking place.

Adopt parameter variability in the form of a ramp :

• �(t) = �0 + ✏t with �0 < �c, |✏/�0| << 1 "forward case"

• �(t) = �0 � ✏t with �0 > �c, |✏/�0| << 1 "backward case"

Two realizations of this setting:

• Supercritical pitchfork bifurcation.

• Limit point bifurcation.
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1. Pitchfork bifurcation

A. Noise-free system
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Time dependent �

• Forward case �(t) = �0 + ✏t, �0 < 0

Exact solution

x(t) =

x0 exp{�0t+ ✏

t2

2 }
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✏ exp(�
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0
✏ )(Erfi�0+✏t

✏1/2
� Erfi �0

✏1/2
)]

1/2

Linearized version, suitable for short-time behavior

x(t) ⇡ x0 exp

✓
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Main effect : Switching to the non-trivial solution is delayed by a time

td =
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✏
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• Backward case �(t) = �0 � ✏t, �0 > 0

Exact solution

x(t) =
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Main effect : Transition to the trivial branch x = 0 starting from state x+(0) =

�

1/2
0 is likewise delayed.



B. Effect of noise

dx

dt

= �(t)x� x

3 + F (t)

F (t) Gaussian white noise of strength q

2

Associated Fokker-Planck equation
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Moments

• Exact expressions in the adiabatic approximation :

< �x

2
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where K and I are modified Bessel functions of fractional order, I�⌫ = I⌫ +
2/⇡ sin(⇡⌫)K⌫ and ↵ stands for �2(t)/(4q2).

• Numerical integration of the Fokker-Planck equation for given noise strength

and for different ✏’s.



Growth of 2

nd
and 4

th
order variances in the forward scenario: early warning.

Maximum of susceptibility, �
�

= @<�x

2
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.

Delays tend to be reduced by the noise.
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Entropies

Information entropy

SI(t) = �
Z

dxP (x, t) lnP (x, t)

and information entropy production

�I =
q

2

2

Z
dx

1

P

(
@P

@x

)
2

> 0

as global indicators

Extrema of both SI and �I well beyond the transition point � = 0 , indicating delays

associated to the reshuffling of the probability mass as the system gradually enters

in the two-state region.
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Further indicators of global behavior : frozen states
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Transitions between states
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Sensitivity of the asymptotic value of the excess probability mass δN∞ on the noise strength q2

and on the rate of the ramp ε

C. Nicolis () Atmospheric and climatic variability 18 / 29

It follows that there exists a finite fraction of initial conditions in the quasi-attraction
basin of x+(t) (or of x�(t)) that will never cross the barrier, given by the expression

�N+,� = N+,� � 1
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This faction depends very sensitively on � and q2.



Stochastic simulations (breakdown of ergodicity)
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2. Limit point bifurcation

A. Noise-free system

�

Normal form

dx

dt

= �(t)� x

2

Fixed �

� < 0 no steady state, trajectories diverge to �1

� > 0 x+ = �

1/2
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1/2
is an unstable steady state

� = 0 bifurcation point

x



Time dependent �

Exact solution

x(t) = ±✏
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Ai, Bi are the Airy functions.



Main effects :

• Stabilization of a wide class of states that would otherwise diverge to �1, as

long as initial conditions satisfy the inequality (forward case)

x0 > ✏

1/3A
0
i( �0
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)

Ai( �0

✏2/3
)

• Early warning in the form of slowing down (backward case).
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B. Effect of noise
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dt
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Analytic evaluation in the linearized regime provides a first understanding of the
behaviour of the fluctuations

Starting point :

d < �x2 >

dt
= �4x(t) < �x2 > +q2

where x(t) satisfies the normal form equation in the absence of noise

Solution :

< �x2 >t = q2 1

Y 4(�0±�t
�2/3 )

� t

0
dt1Y

4(
�0 ± �t1

�2/3
)

where Y is a linear combination of Airy functions.

Diffusion-like behavior in the vicinity of the limit point (short times)

< �x2 >t � q2t
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Slowing down followed by explosive behavior (backward scenario) : early warning.

Coupling with fluctuations accelerates explosive behavior.



Frozen states

Constant �: all trajectories eventually escape to �� following fluctuation-induced
jumps across the barrier separating x+ from x�, with a characteristic time which is
an increasing function of � and is given again by a Kramers-type expression

� =
�

2�1/2
exp

�
8�3/2

3q2

�

Time-dependent �, forward scenario: there exists a finite fraction of initial condi-
tions in the quasi-attraction basin of x+(t) that will never escape, given by
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where τ+ is given by Kramers’ formula

τ+ = π
[

− U ′′
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x(0)
− , t
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+ , t

)]−1/2
exp

[

2
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and U , ∆U are given by eqs. (13a), (13b). A straightforward evaluation leads to

τ+ =
π

2(µ0 + εt)1/2
exp

[

8
3q2

(µ0 + εt)3/2
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. (15)

Equation (14) subject to expression (15) for τ+ can be integrated exactly, yielding

N+(t) = N+(0) exp

[
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2πε

[

exp
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− 8
3q2

(µ0 + εt)3/2

]

− exp
[

− 8
3q2

µ3/2
0

]

]]

. (16)

In the limit ε → 0 this equation predicts an exponential decay of N+ as a function of time to
zero. This could be expected from classical Kramers’ theory, since the potential is becoming
increasingly deep as x becomes less than x(0)

− , entailing that the system will eventually be
attracted to −∞ (or to a lower stable solution branch at a finite distance from the transition
region). The situation is qualitatively different if ε is not strictly zero. Equation (16) reduces
then for t $ 1/ε to

lim
t→∞

N+(t) = N+(∞) = N+(0) exp

[

− q2

2πε
exp

[

− 8µ3/2
0

3q2

]]

. (17)

In other words, contrary to classical Kramers’ theory, the system retains a finite probabil-
ity mass in the domain around the quasi-attraction basin of x(0)

+ , even though the “quasi-
attractor” at x = −∞ is by far more dominant. Furthermore, the amount of retention
depends on the initial value N+(0), a fact that can be interpreted as the loss of ergodicity
of the system at hand. Such frozen states arise from the competition between the stabilizing

This fraction depends again very sensitively on ✏ and q2



3. Illustration on a global energy balance model
Energy balance equation for the globally averaged temperature T

C
dT

dt
= Q (1 � a(T )) � I(T )

C heat capacity

Q solar constant

a Albedo

I Infrared cooling

Minimal model :

• Piecewise linear dependence of a on T (ice-albedo feedback).

• Linearized version of the Stefan-Boltzmann law for I, accounting also for the
effect of increasing CO2 concentration

I(T ) = A + BT � K
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For a given (time-independent) value of K .  eqs. 
( 1  5a)-( 15c) admit three steady-state solutions pro- 
vided that QB, - B < 0, QDz - B > 0. These sol- 
utions are depicted as functions of K / C  in Fig. 4. 
A straightforward stability analysis shows that 
the two extreme branches are stable, whereas the 
intermediate one is unstable. The lower and 
intermediate branch merge at a critical value of 
K given by 

K* = . Y , ( B  - QB,), (16) 
beyond which the system is expected to perform a 
jump toward the upper branch. 

The choice of the parameters is based on the 
following considerations. As these parameters fix 
the exact position of the two stable states, some 
constraints must be satisfied. For example. the 
present-day solution must be stable and the slope 
of the albedo around this state must be in agree- 
ment with the experimental or theoretical order 
of magnitude estimates (see, for instance, D.O.E. 
(1985)). Moreover according to our previous 
discussion in connection with climate sensitivity, 
in the intermediate (unstable) branch of states, bz 
must be larger than p i .  Its specific value cannot 
be estimated at this stage, but it must be such 
that the temperature jump to the upper branch of 
stable states has a reasonable value. The follow- 
ing particular set of parameters satisfies the 

5 

X 

0 

K / C  
Fig. 4. Dependence of the steady state solutions of eqs. 
(15)  on the COz content K. The lower and intermediate 
branches merge at the critical value K * .  For the values 
of the parameters used, (a) and (c) are stable whereas 
(b) is unstable. The cross in branch (a) represents a 
reference state corresponding to pre-industrial climatic 
conditions. 

above conditions: /I, = 5 x = 8.7 x lo-', 
.xi = 0.6 K and x ?  = 6 K .  

We now perform the following two thought 
experiments. First, starting from K = 0 (corre- 
sponding to, say, the preindustrial value of COz), 
we suddenly increase its value until the system is 
brought slightly above the critical point K * ,  
K = K* + 6. And second, we introduce a smooth 
linear increase of K in time, thus allowing the 
system to sweep the multiple steady state region 
until a time (the present day situation) for which 
K is slightly above K * .  Fig. 5 depicts the response 
curves x ( t )  corresponding to these two situations. 
Both curves are readily obtained by a fully ana- 
lytic calculation. 

Let us comment successively on the two curves 
of Fig. 4. 

(i) Stepwise increiue, Fig. 5, curve (a). The 
system's temperature first increases systemati- 
cally. but does not jump toward the hot climate 
branch, unless an induction period has elapsed. 
Its length, defined as the time needed to reach a 
value x = 2x,, is given for small 6 by 

1 
6 

rind - In -. 

This form of switching is therefore similar to the 
observed temperature record, whereby a system- 
atic increase of temperature until about the 
middle of this century is followed by a marked 
slowing down (Jones et al.. 1986). It highlights 

0 

6 

X 

L 

2 

Fig. 5. Numerical integration of eqs. (15) with initial 
condition Y = 0. Curve (a): sudden increase of the C 0 2  
content above the critical point K =  K* + 6  with 
6 = Curve (b); gradual increase, K =  k t  with 
E = 0.01 year-' and K,'C = I year-I. 

Tellus 40A (1988). 1 
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Fixed K : Transitions between steady states via limit point-like bifurcations.

Time-dependent K : Stabilization of unstable states corresponding to a cool cli-
mate and slowing down prior to abrupt transitions toward a hot climate, in agree-
ment with the predictions of the normal form analysis.



4. Conclusions
Climatic change viewed as the response of a nonlinear dynamical system to time-

dependent control parameters in the presence of noise.

Sorting out some generic trends thanks to the reduction of the multivariate dynam-

ics into a low-order one in the vicinity of transition points.

Identification of local and global forerunners of the transitions between steady states

occurring through a pitchfork or a limit point bifurcation:

• Transient stabilization of unstable states tend to delay the transition.

• Fluctuations start growing at a finite distance from the transition.

• Fluctuation-driven evolutions. Frozen states.

Apply the general procedure to more realistic models than the global energy bal-

ance model.

Extend to more complex transitions and to time-dependences beyond the linear

ramp.


