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e ie the world looks like this




€ then the CanAngatzfara l
solving the underlying PDEs
would be well posed
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The reality of the situation
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cannot be described by a simple deterministic formule
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GLOBAL Distribution of all physics temperature tendencies at ~500 hPa (64 ml)
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CalladePalaresind Shutts 2013.

Coarsegraining
(Shuttsand Palmer, 2007)
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Bar= Subset off 159total temperature
parametrisatiortendenciedriven by
T1279 coarsgrain fields.

Curvd [/ 2 NNB & LJ2 y RTA58 3
scale tendency conditioned on T1279
coarsegrain averaged fields.

le when theparametrisationshink the
sub-grid pdfis a thin hat function, the
reality is a much broadeydf.

The standard deviation increases with
parametrisedendencyg consistent with
multiplicative noise stochastic schemes.
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A Convergence errors
A Roundoff errors
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Resolved scales ~ Truncation Scale (7 to 8 orders of unresolved scales
< magnitude above viscous scale!)

Dynamical Core Parametrisations




NPhysicso
Computationally cheap
Dynamical stochastic-dynamic

Core model providing
specific realisations of
sub-grid processes
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an ensemble context. But forecasts should only made in
an ensemble context in any case!
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Stochastic Cellular Automata
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A stochastic parameterization for
deep convection using cellular
automata

Lisa Bengtsson', Martin Steinheimer?,
Peter Bechtold®, Jean-Frangois Geleyn*
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To be submitted to J. Almos. Sci.

Fabruary 2012

European Cantre for Madium-Range Weathar Foracosts

urn fir i

Europdscheas Lo stige Welbervorhersoge

Cenfre européen pour les ons méttorologiques & moyen ferme

A
120 140
Figure 1: E> le of a Cellular A Jollowing the rules of Conway’s game of life
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Figure 5: 24 hour accumulated precipitation (mm) on 17 December 2010 over the British Isles and Western Europe
as observed by the OPERA radar network (a), the operational 24 hour deterministic IFS forecast at spectral
resolution T1279=16 km (b), difference (mm) between the operational forecast and forecast using CA with CAPE
seeding (c), the corresponding CA pattern for CAPE seeding (number of lives) (d), difference (mm) between the
operational forecast and forecast using CA with CIN seeding (e), and corresponding CA pattern for CIN seeding
(number of lives) (f)



Stochastic and Deterministic Multicloud
parameterizations for tropical convection

Yevgeniy Frenkel - Andrew J. Majda -
Boualem Khouider
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Stochastianulticloudmodel based on a Markov chain lattice
model. An extension of alsingtype spinflip model used for

phase transitions in material science
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Stochastic Parametrization and
Model Uncertainty

Palmer, T.N., R. Buizza, F. Doblas-Reyes,

T. Jung, M. Leutbecher, G.J. Shutts,
M. Steinheimer, A. Weisheimer

Research Department

OQctober &, 2009

AMultiplicative
NoisecO mb & Ut

AOperational since
1999

Almproved forecast
reliability

AReduced
systematic error

Originally based on CA
pattern generators,
now spectral.
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Approximate

0\ ‘ . , sub-grid
Worse {  skillin simulating climate pdf tendency by
0.048p ™
o Deterministic: U =U,,
% 0.0461 ‘ ..
& Additive: U =Uy, +e&,,
QO 0.045f
2 ol “a Multiplicative: U = (1+@ U,
0.043f {1 Where:
0.042| Arnold et al 2013 NG =i — CURIE polnamEy I s
e,r = White / red noise
0.041¢ ? !

Deterministic White Additive AR1 Aldditive Multiplicative Flt parameters from fU” mOdeI
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Stochastic Parametrisation
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using doubleprecision bitreproducible
computations for high wavenumbers?



IV Towards the cloud-resolved model
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4.1 A prand challenge:
Towards 1 km global resolution

A "prand challenge" for the longer term is to deve-
lop global climate models which resalve convective
scale motions (nominally arcund 1km horzoatal
resolution). Although ostensibly this challenge is
only about resolution, ENES believes that addeses-
sing this challenge will also support nearly all of the
other scientific poals outlined carlizr,

Problem:

Models make inefficient use of
available HPC capability (elapsed

time < 10% of peak time) and HPC

is itself becoming increasingly
energy intensive and hence
expensive (100MWs for a bit
reproducible exaflop machine?!)




Triangular
Truncation

Reduced Precision
arithmetic
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Motivation

A Move less information

real(kind=8) . a I | am 8 Bytes
real(kind=4) b I | am 4 Bytes

A Fit more information into cache

A Lower precision arithmetic is faster

a = at+a-a*a*a I Wow, time flies!
b= b+b-b*b*b | T hat was fast!



Superefficient inexact chips

http:// news.rice.ed(2012/05/17/computing-expertsunveitsuperefficientinexactchip/

In terms of speed, energy
consumption and size,
iInexact computer chips like
this prototype, are about 15
times more efficient than
today's microchips.

Krishna Palem.
Rice, NTU
Singapore

This comparison shows frames produced with video- processmg software on tradltlonal processing elements (left),
inexact processing hardware with a relative error of 0.54 percent (middle) and with a relative error of 7.58 percent
(right). The inexact chips are smaller, fasterand consume less energy. The chip that produced the frame with the
mosterrors (right) is about 15 times more efficientin terms of speed, space and energy than the chip that
produced the pristine image (left).



Towards the Stochastic
Dynamical Core?
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Emulator of Stochastic Chip/Reduced Precisior

exponent fraction
sign (11 bit) (52 bit)
I
o o
63 5% Y %

10% probability of bit flip

|

50% probability of
bit flip

The emulator is used on 50% of numerical workload:
All floating point operationsin grid point space
All floating point operationsin the Legendre transforms between wavenumbers 31 and 8

Costapproxthat of T73



Probability density

20% fault rate on Y variables
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Imprecise L96 iIs more accurate than
parametrisedL96

Hugh McNamara personal communication



Weatherforecastswith impreciseprocessing

PeterDuben Personal Communication



