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... le the world looks like this




... then the Canonical Numerical Ansatz for
solving the underlying PDEs
would be well posed
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The reality of the situation

grid box grid box

cannot be described by a simple deterministic formula
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Coarse-graining
(Shutts and Palmer, 2007)

Assume T1279 (16km) model = “truth”.

III

Assume T159 coarse-grain “model” grid.
Bar=Subset of T159 total temperature
parametrisation tendencies driven by
T1279 coarse-grain fields.

Curve= Corresponding “true” sub-T159-
scale tendency conditionedon T1279
coarse-grain averaged fields.

le when the parametrisationsthink the
sub-grid pdfis a thin hat function, the
reality is a much broader pdf.

The standard deviationincreases with
parametrised tendency — consistent with
multiplicative noise stochastic schemes.



Earth’s Topography has Power Law Structure Too
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Dynamical Core

z= a 2, P (f)

e Discretisationerrors
* Convergence errors
e Round-offerrors

Unresolved scales
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Parametrisations

Tr?

P(X,;a)

e Errorsinthe functional form of P
e Errorsinthe assumed values of a
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Resolved scales Truncation Scale (7 to 8 orders of Unresolved scales
¢ magnitude above viscous scale!)
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Dynamical Core Parametrisations




Dynamical
Core

“Physics”
Computationally cheap
stochastic-dynamic
model providing
specific realisations of
sub-grid processes

Not such a “brick wall” interface. Only makes sense in
an ensemble context. But forecasts should only made in
an ensemble context in any case!




Stochastic
Cellular
Automaton
for
Convection

Probability of an “on”cell
proportional to CAPE and
number of adjacent “on” cells
— “on” cells feedback to the
resolved flow

Palmer 1997



Stochastic Cellular Automata
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Figure 1: E> le of a Cellular A Jollowing the rules of Conway’s game of life
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Figure 5: 24 hour accumulated precipitation (mm) on 17 December 2010 over the British Isles and Western Europe
as observed by the OPERA radar network (a), the operational 24 hour deterministic IFS forecast at spectral
resolution T1279=16 km (b), difference (mm) between the operational forecast and forecast using CA with CAPE
seeding (c), the corresponding CA pattern for CAPE seeding (number of lives) (d), difference (mm) between the
operational forecast and forecast using CA with CIN seeding (e), and corresponding CA pattern for CIN seeding
(number of lives) (f)



Stochastic and Deterministic Multicloud
parameterizations for tropical convection

Yevgeniy Frenkel - Andrew J. Majda -
Boualem Khouider
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Stochastic multicloud model based on a Markov chain lattice
model. An extension of an Ising-type spin-flip model used for
phase transitions in material science
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Stochastic Parametrization and
Model Uncertainty
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T. Jung, M. Leutbecher, G.J. Shutts,
M. Steinheimer, A. Weisheimer

Research Department

OQctober &, 2009

Multiplicative
Noise — (1+€)P
Operational since
1999

Improved forecast
reliability
Reduced
systematic error

Originally based on CA
pattern generators,
now spectral.



Experiments with the Lorenz ‘96 System (i)
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Stochastic Parametrisation

Are we “over-engineering” our dynamical cores by
using double-precision bit-reproducible
computations for high wavenumbers?



IV Towards the cloud-resolved model
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4.1 A prand challenge:
Towards 1 km global resolution

A "prand challenge" for the longer term is to deve-
lop global climate models which resalve convective
scale motions (nominally arcund 1km horzoatal
resolution). Although ostensibly this challenge is
only about resolution, ENES believes that addeses-
sing this challenge will also support nearly all of the
other scientific poals outlined carlizr,

Problem:

Models make inefficient use of
available HPC capability (elapsed

time < 10% of peak time) and HPC

is itself becoming increasingly
energy intensive and hence
expensive (100MWs for a bit
reproducible exaflop machine?!)




Triangular
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Reduced Precision
arithmetic



Oliver Fuhrer - Met Swisse

Motivation

* Move less information

real (kind=8) :: a ! T am 8 Bytes
real (kind=4) :: b ! T am 4 Bytes

* Fit more information into cache

* Lower precision arithmetic is faster

= at+a—-a*a*a ! Wow, time flies!

a
b b+b-b*b*b ! That was fast!



Superefficient inexact chips

http://news.rice.edu/2012/05/17/computing-experts-unveil-superefficient-inexact-chip/

SR . In terms of speed, energy
sl g2~ CoOnsumption and size,

----- I BE! inexact computer chips like
B this prototype, are about 15
times more efficient than
today's microchips.
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Krishna Palem.
Rice, NTU
Singapore

This comparison shows frames produced with video- processmg software on tradltlonal processing elements (left),
inexact processing hardware with a relative error of 0.54 percent (middle) and with a relative error of 7.58 percent
(right). The inexact chips are smaller, fasterand consume less energy. The chip that produced the frame with the
mosterrors (right) is about 15 times more efficientin terms of speed, space and energy than the chip that
produced the pristine image (left).



Towards the Stochastic
Dynamical Core?
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Emulator of Stochastic Chip/Reduced Precision
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50% probability of
bit flip

The emulatoris used on 50% of numerical workload:
All floating point operationsin grid point space

All floating point operationsin the Legendre transforms between wavenumbers31 and 85.

Cost approxthatof T73



20% faultrate on Y variables
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Imprecise L96 is more accurate than
parametrised L96

Hugh McNamara personal communication



Weather forecasts with imprecise processing
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20 Years Ago

Dynamics Parametrisation

O(100km
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Now

Dynamics Parametrisation




In 10 years?

Dynamics Parametrisation




